Module Information

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Module Leader</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>Equine Science 2</td>
<td>Jo Charles</td>
</tr>
</tbody>
</table>

| School which owns module | School of Equine Management and Science |

| Programme(s) to which module belongs | BSc (Hons) International Equine and Agricultural Business Management (core) |
| | BSc (Hons) Equine Management (optional core) |

<table>
<thead>
<tr>
<th>Module Level</th>
<th>Module Credits</th>
<th>Pre-Requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>15</td>
<td>1009</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minimum Study Time</th>
<th>Contact Hours within Study Time</th>
<th>Teaching Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 hours</td>
<td>45</td>
<td>Tuesday pm</td>
</tr>
</tbody>
</table>

Module Content

Review of conformation and anatomical features relating to athletic ability. Cardiovascular and musculoskeletal systems of the horse. Energy metabolism and metabolic adaptations to training. Assessment of athletic potential and physical fitness. Thermoregulation. Avoidance and management of exercise intolerance and fatigue. Students will be expected to review and critically appraise literature and also develop skills in presenting proposals linked to the enhancement of equine performance and training, including suggested methods and statistical treatment of data.

Module Outcomes

To achieve credit for this module, students must be able to:

1. Demonstrate knowledge and understanding of the physiological adaptations to training within the different tissues, e.g. bone and muscle.
2. Identify appropriate methods of assessing fitness and physiological responses to training.
3. Apply knowledge of scientific research to optimise performance of the equine athlete.
4. Create a hypothetical project proposal within a group.
5. Formulate an hypothesis and test it using appropriate statistical techniques.

Assessment

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Description</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coursework</td>
<td>1 x literary review</td>
<td>60%</td>
</tr>
<tr>
<td></td>
<td>1 x group presentation</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td>1 x practical exercise</td>
<td>20%</td>
</tr>
<tr>
<td>Examination</td>
<td>No exam</td>
<td></td>
</tr>
</tbody>
</table>
Key Text:
Students should be familiar with the content of at least one of the following:

Supporting Texts:

Journals
Equine exercise physiology 7 [Equine Veterinary Journal supplement 36]: proceedings of the seventh international conference, 26-31 August, 2006, Fontainebleau, France edited by B Essen-Gustavsson
Equine Veterinary Journal.
Journal Equine Veterinary Science.
Veterinary Clinics Of North America: Equine Practice.

Websites
http://www.ker.com/research/
www.engageinresearch.ac.uk
http://www.stats.gla.ac.uk/steps/glossary/index.html
http://www.biology.ed.ac.uk/research/groups/jdeacon/statistics/tress1.html